Skip to main content
Log in

Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Paramecium or other ciliates have the potential to be utilized for minimally invasive surgery systems, making internal body organs accessible. Paramecium shows interesting responses to changes in the concentration of specific ions such as K+, Mg2+, and Ca2+ in the ambient fluid. Some specific responses are observed as, changes in beat pattern of cilia and swimming toward or apart from the ion source. Therefore developing a model for chemotactic motility of small organisms is necessary in order to control the directional movements of these microorganisms before testing them. In this article, we have developed a numerical model, investigating the effects of Ca2+ on swimming trajectory of Paramecium. Results for Ca2+-dependent chemotactic motility show that calcium gradients are efficient actuators for controlling the Paramecium swimming trajectory. After applying a very low Ca2+ gradient, a directional chemotaxis of swimming Paramecium is observable in this model. As a result, chemotaxis is shown to be an efficient method for controlling the propulsion of these small organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cooper, M. S. (2008). Diagnosis and management of hypocalcaemia. BMJ, 336(7656), 1298–1302.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kassim, I., Phee, L., Gong, F., Dario, P., & Mosse, C. A. (2006). Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine, 25(3), 49–56.

    Article  PubMed  Google Scholar 

  3. Freitas, R. A. (2005). Nanotechnology, nanomedicine and nanosurgery. International Journal of Surgery, 3(4), 243–246.

    Article  PubMed  Google Scholar 

  4. Dogangil, G., Ergeneman, O., Abbott, J. J., Pan´e, S., Hall, H., et al. (2008). Toward targeted retinal drug deliverywith wireless magnetic microrobots. In Proceedings IEEE/RSJ international conference intelligent robots system. 22–26 September, 1921–1926

  5. Haga, Y., & Esashi, M. (2004). Biomedical microsystems for minimally invasive diagnosis and treatment. Proceedings of the IEEE, 92(1), 98–114.

    Article  CAS  Google Scholar 

  6. Saliterman, S. S., (2006). Fundamentals of BioMEMS and Medical Micro devices. Bellingham, WA: SPIE. ISBN 0-8194-5977-1.

  7. Fearing, R. S., (1991). Control of a micro-organism as a prototype micro robot. In 2nd International symposium on micromachines ans human sciences. Nagoya, japan.

  8. Fukui, K., & Asai, H. (1985). Negative geotactic behavior of Paramecium caudatum described by the mechanicm of buoyancy-oriented upward swimming. Biophysical Journal, 47, 479–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ogawa, N., Oku, H., Hashimoto, K., Ishikawa, M., (2005). Dynamics model of Paramecium galvanotaxis for microrobotic application. In Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, April 2005.

  10. Oosawa, F. (2007). Spontaneous activity of living cells. Biosystems, 88, 191–201.

    Article  PubMed  Google Scholar 

  11. Hirano, A., Tsuji, T., Takiguchi, N., Ohtake, H. (2006) An electrophysiological model of chemotactic response in Paramecium. In IEEE conference on systems, man, and cybernetics 8–11 October, 2006, Taipei, Taiwan

  12. Furukawa, S., & Kawano, T. (2012). Enhanced microsphere transport in capillary by conditioned cells of green Paramecia used as living micromachines controlled by electric stimuli. Sensors and Materials, 24(7), 275–386.

    Google Scholar 

  13. Giuffre, C., Hinow, P., Vogel, R., Ahmed, T., Stocker, R., Thomas, R., et al. (2011). The ciliate Paramecium shows higher motility in non-uniform chemical landscapes. Plos One, 6, E15274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakaoka, Y., Tanaka, H., & Oosawa, F. (1984). Ca2+ dependent regulation of beat frequency of cilia in Paramecium. Journal of Cell Science, 65, 223–231.

    CAS  PubMed  Google Scholar 

  15. Lansley, A. B., & Sanderson, M. J. (1999). Regulation of airway ciliary activity by Ca2+: Simultaneous measurement of beat frequency and intracellular Ca2+. Biophysical Journal, 77, 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alvarez, L., Dai, L., Friedrich, B. M., Nachiket, D., Kashikar, I. G., Pascal, R., & Kaupp, U. B. (2012). The rate of change in Ca2+ concentration controls sperm chemotaxis. Journal of Cell Biology, 196(5), 653–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dryl, S., & Kurdybacha, J. (1978). Dependence of chemotaxis in Paramecium caudatum and Paramecium tetraurelia 51 s on concentration of calcium ions in external medium. Acta Protozoologica, 174, 551–559.

    Google Scholar 

  18. Wang, S., & Ardekani, A. M. (2012). Unsteady swimming of small organisms. Journal of Fluid Mechanics, 702, 286–297.

    Article  Google Scholar 

  19. Zhu, L., Do-quang, M., Lauga, E., & Brandt, L. (2011). Locomotion by tangential deformation in a polymeric fluid. Physical Review E, 83(1), 011901.

    Article  Google Scholar 

  20. Blake, J. R. (1971). A spherical envelope approach to ciliary propulsion. Journal of Fluid Mechanics, 46, 199–208.

    Article  Google Scholar 

  21. Olson, S. D. (2013). Fluid dynamic model of invertebrate sperm chemotactic motility with varying calcium inputs. Journal of Biomechanics, 46, 329–337.

    Article  PubMed  Google Scholar 

  22. Sochivco, D., Pereverzev, A., Smyth, N., Gissel, C., Schneider, T., & Beck, H. (2002). The Cav2.3 Ca2+ channel subunit contributes to R-type Ca2+ currents in murine hippocampal and neocortical neurons. Journal of Physiology, 542(3), 699–710.

    Article  Google Scholar 

  23. Palagi, S., Jager, E. W., Mazzolai, B., & Beccai, L. (2013). Propulsion of swimming microrobots inspired by metachronal waves in ciliates: From biology to material specifications. Bioinspiration and Biomimetics, 8, 046004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Shamloo or Mohammad Taghi Ahmadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvestani, A.N., Shamloo, A. & Ahmadian, M.T. Simulation of Paramecium Chemotaxis Exposed to Calcium Gradients. Cell Biochem Biophys 74, 241–252 (2016). https://doi.org/10.1007/s12013-016-0727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0727-8

Keywords

Navigation